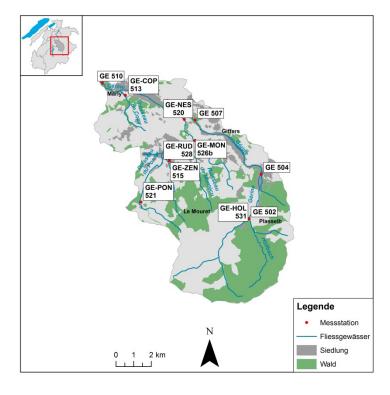


Zusammenfassung Kampagne

Nach dem Monitoringprogramm des AfU, wurden die folgenden Stationen im Einzugsgebiet der Ärgera untersucht:

- > IBCH: 10 Stationen(2 Probennahmen pro Station, zwischen dem 26. März und 4.April 2013 und dem 25. September und 3. Oktober 2013.
- > Kieselalgen: 2 Stationen (2 Probenahmen pro Station, am 2.April und am 27. September 2013)
- > Physikalisch-chemische Parameter: 5 Stationen (12 allmonatliche Probennahmen währendem Jahr 2013)

Alle Proben bis auf GE 502 konnten gemäss Protokoll durchgeführt werden.


Die Station GE 502 wurde im Frühling ca. 1 Km nach oben verschoben. Eine starke punktuelle Trübung, verursacht von einem Kieswerk, verhinderte eine korrekte Anwendung des IBCH Protokolls.

Charakterisierung des Einzugsgebiets der Ärgera

Nr. EzG Atlas	20-273 – 20-274
Kampagne	2013
Anzahl Stationen	10
Vorherige Stationen	1983 – 1992 – 2008
Gemeinden	Plasselb – Tentlingen – Treyvaux – Le Mouret – St. Silvester – Villarsel-sur-Marly – Marly

Fläche [km²]	41.2 - 37.8	Höhe max/min [m]	1750 - 650 / 1650 - 550
Mittlere Höhe [m]	1164 – 855	% bewaldete Fläche	45.0 – 36.6
% versiegelte Fläche	0.5 – 1.4	Mittlere Steigung [%]	20.5 – 12.1
Leitfähigkeit [µS/cm]	238 à 621		

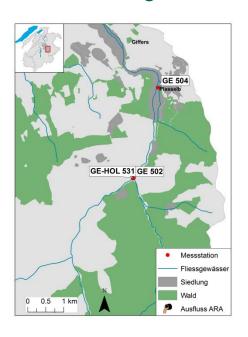
Typisierung der Fliessgewässer und Lokalisierung der Stationen im Einzugsgebiet

Gewässernetz Höllbach Barretabach Kuhbach Torrygraben Muelersbach r. du Mouret r. du Pontet Nesslerabach r. de Montécu Ruedigraben r. de Copy **Abflussregime** nival de transition / nivo-pluvial préalpin Ökomorphologie 51% natürlich, naturnah 22% wenig beeinträchtigt 11% stark beeinträchtigt < 1% naturfremd, künstlich 10% eingedolt 6% nicht klassiert. Bei der grossen Mehrheit der eingedolten Flussabschnitte handelt es sich um kleine Zuflüsse am Kopf des Einzugsgebietes.

Bei den anderen degradierten Abschnitten (stark beeinträchtigt bis künstlich) handelt es sich um die Ärgera in Marly und den Nesslerabach in Le Mouret.

Bestandsaufnahme des Einzugsgebietes der Ärgera

Synthese der untersuchten Stationen im Einzugsgebiet, basiert auf die deklassierenden Parameter: Die Bilanz zeigt die Qualität im ungünstigsten Fall an.


Module / Stationen	- Jan					Wichtigste Beeinträchtigung(en)
	IBCH (IBGN)	DI-CH	Chemie	Ökomorph. F	Äusserer Aspekt	
GE 502		-	-			Kieswerk
GE-HOL 531		-	-			-
GE 504		-	-		Färbung	Industrielle Einleitung
GE 507		-				-
GE-PON 521			PO ₄ ³⁻ / DOC	\bigvee	organischer Schlamm	Abwassereintrag Klärgrube? Landwirtschaft?
GE-ZEN 515			-		Schaum / Färbung	Verdächtige Einleitung
GE-MON 526b		-	-		Eisensulfid / Färbung	Industrielle Einleitung
GE-RUD 528		-	-			-
GE-NES 520		-			Färbung	-
GE-COP 513		-				-
GE 510	-	-			-	-
Sehr gut	Gut	Mässig	Unbefriedig	end Schlecht		

Massnahmen zur Verbesserung des Zustandes

Industrie	Kontrolle der Einleitungen und Sanierung	
Abwassereintrag	Fehlanschlüsse suchen und sanieren, Kontrolle individueller Installationen	
Andere	Überwachung des Kieswerks	
Landwirtschaft	Überwachung und Informieren der Landwirte	
Puffersteifen	Einhaltung des Pufferstreifens (6 m links und rechts)	

Station GE 502

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ärgera
GEWISS	232	Station	Amont confluence Höllbach
Koord.	584619 / 173260	Gemeinde	Plasselb

Die Station musste im Frühling aufgrund starker Trübung ca. 1 km nach oben verschoben werden. Die Störung wurde durch ein Kieswerk verursacht. Da das Substrat nicht sichtbar war, konnte das korrekte IBCH Protokoll nicht angewendet werden. Im Herbst wurde die ursprünglich vorgesehene Station beprobt.

Kampagne	vorherig	201	3
	11.07.2008	26.03.2013 Station 1 km nach oben verschoben	03.10.2013
Ökomorphologie F	Natürlich, naturnah	Natürlich, r	naturnah
Kenndaten			
Dominantes Substrat	Blöcke	Blöck	ke
Substrate / Kolmation	-	-	
Algenbewuchs	-	Einige Fad	enalgen
Ufervegetation	2 Ufer	2 Ufe	er
Morphologie / Verbauung	Natürlicher Fluss	Ufer lokal verbaut (Schwellen + Buhne RU)	Natürlicher Fluss
Einfluss oberhalb	-	-	

Ökomorphologische Beeinträchtigung	Flussbett teils beeinträchtigt (Buhne RU) im März 2013 (verschobene Station)
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

	Kampa	gne 2013	
	26.03.2013	03.10.2013	
Heterotropher Bewuchs			
Eisensulfid			
Schlamm			
Schaum			
Trübung			
Verfärbung			
Geruch			
Kolmation			
Feststoffe (Entwässerung)			
Anforderungen erfüllt / keine	Erfül	llung fraglich / le	icht-mittel

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	20	013
Datum	11.07.2008	26.03.2013	03.10.2013
Methode	IBGN	IBCH	IBCH
Nr. Gl	5	9	6
Indikator Gruppe	Heptageniidae	Perlodidae	Nemouridae
Summe Taxa	12	17	14
IBCH Wert (IBGN)	8	14	10

Kieselalgen

Kampagne			201	3
Kieselalgen				-
O DI-CH		\triangle Trophie	□ Sa	probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahme / Abflussmessungen mit Salinomad	-	-

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	-
Schwebstoffe (min/max)	mg/L	-
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff		
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃ -	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	-
Pestizide		-

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	-
Cadmium Cd	μg/L	-
Chrom Cr (III und VI)	μg/L	-
Kupfer Cu	μg/L	-
Nickel Ni	μg/L	-
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	-

Indikatoren – Evolution der Situation – zu erreichende Ziele

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +			
	Nitrite / N-NO ₂ -			
	Nitrate / N-NO ₃ -			
	Orthophosphate / P-PO ₄ 3-			
	Gesamtphosphor / Ptot			
	DOC/TOC			
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht Gradien Aktuelle Situation (2013)			

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden nur im Frühling erreicht (gute Qualität im März 2013, mässig im Oktober 2013). Die Note verbesserte sich zwischen 2008 und 2013.
- > Auf beiden Stationen werden ein guter ökomorphologischer Zustand und ein ausgezeichneter genereller Aspekt beobachtet. Die gute Note des IBCH im März zeigt einen guten Zustand an, hingegen die mässige Note im Oktober eine Beeinträchtigung im Milieu. Nicht auszuschliessen sind die natürlichen Bedingungen (starke Dynamik), die eine Besiedlung der Makroinvertebraten erschweren. Jedoch wird die Station durch das Kieswerk stark gestört. Die exzessive Trübung, wie im März beobachtet beeinträchtigt das Makrozoobenthos. Falls sich die Situation wiederholt, kann das Substrat kolmatieren.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	Überwachung des Kieswerks (Aushub, Lagerung des Materials, Umgang mit dem Abflusswasser und Waschanlage)
Landwirtschaft	
Pufferstreifen	-
Verschmutzungen	-

Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

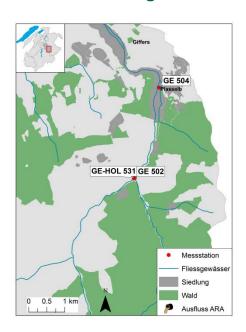
Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The same of the sa	IBCH (IBGN)				
	DI-CH		-	-	-
H-	Chemie	-			-
	Ökomorphologie F				
	Äusserer Aspekt		<u> </u>		

Auskunft

_

Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez


T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE-HOL 531

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Höllbach
GEWISS	5700	Station	Aval
Koord.	584646 / 173270	Gemeinde	Plasselb

Kampagne	vorherig	2	013
	11.07.2008	26.03.2013	03.10.2013
<u></u>			
Ökomorphologie F		Natürlich	n, naturnah
Kenndaten			
Dominantes Substrat	Blöcke	Blo	öcke
Substrate / Kolmation	-		-
Algenbewuchs	-	Einige Fadenalgen	-
Ufervegetation	2 Ufer	2	Ufer
Morphologie / Verbauung	Natürlicher Fluss	Natürlic	cher Fluss
Einfluss oberhalb	-		-

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

	Kampagne 2013				
	26.03.2013	03.10.2013			
Heterotropher Bewuchs					
Eisensulfid					
Schlamm					
Schaum					
Trübung					
Verfärbung					
Geruch					
Kolmation					
Feststoffe (Entwässerung)					
Anforderungen erfüllt / keine	Erfül	lung fraglich / lei	cht-mittel	Anforderui	ngen nicht erfüllt

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	2013	
Datum	11.07.2008	26.03.2013	03.10.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	9
Indikator Gruppe	Leuctridae	Taeniopterygidae	Perlidae
Summe Taxa	12	17	17
IBCH Wert (IBGN)	10	14	14

Bon / Sehr gut (17-20)

Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12) Médiocre / Unbefriedigend (5-8) Mauvais / Schlecht (0-4)

Kieselalgen

Kampagne	ne 2013			3
Kieselalgen				-
O DI-CH		△ Trophie		probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahme / Abflussmessungen mit Salinomad	-	-

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	-
Schwebstoffe (min/max)	mg/L	-
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff		
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃ -	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	-
Pestizide		_

Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	μg/L	-
Cadmium Cd	μg/L	-
Chrom Cr (III und VI)	μg/L	-
Kupfer Cu	μg/L	-
Nickel Ni	μg/L	-
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	-

Indikatoren – Evolution der Situation – zu erreichende Ziele

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +			
	Nitrite / N-NO ₂ -			
	Nitrate / N-NO ₃ -			
	Orthophosphate / P-PO ₄ ³⁻			
	Gesamtphosphor / Ptot			
	DOC/TOC			
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht			

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich zwischen 2008 und 2013.
- > Der ausgezeichnete ökomorphologische Zustand, der äussere Aspekt sowie die gute hydrobiologische Qualität weisen auf einen sehr guten Zustand hin. Aufgrund der natürlichen Bedingungen (sehr starke Dynamik, stark mineralische Substrate, Geschiebe) ist die Häufigkeit der Taxa eher gering.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	
Landwirtschaft	
Pufferstreifen	-
Verschmutzungen	-

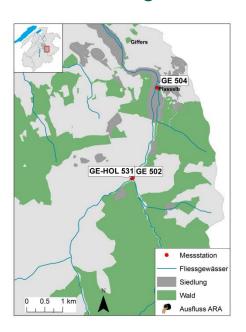
Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
	IBCH (IBGN)				
-i ^x	DI-CH		-	-	-
	Chemie	-			-
*	Ökomorphologie F	-			
	Äusserer Aspekt		<u> </u>		

Auskunft

_

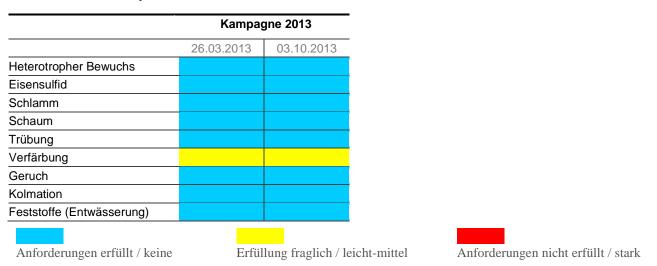
Amt für Umwelt AfU Sektion Gewässerschutz


Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE 504


Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ärgera
GEWISS	232	Station	Plasselb
Koord.	585322 / 175779	Gemeinde	Plasselb

Kampagne	vorherig	20	13
	11.07.2008	26.03.2013	03.10.2013
Ökomorphologie F	Natürlich, naturnah	Natürlich,	naturnah
Kenndaten			
Dominantes Substrat	Blöcke	Steine, Ki	eselsteine
Substrate / Kolmation	-		-
Algenbewuchs	-	Einige Fadenalgen	-
Ufervegetation	2 Ufer	2 L	Jfer
Morphologie / Verbauung	Ufer lokal verbaut (Blockverbau)	Natürlich	ner Fluss
Einfluss oberhalb	-		-

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	Industrielle Einleitung
Andere Abfälle	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	2013	
Datum	11.07.2008	26.03.2013	03.10.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	9
Indikator Gruppe	Leuctridae	Perlodidae	Perlidae
Summe Taxa	14	20	19
IBCH Wert (IBGN)	11	14	14

Kieselalgen

Kampagne		2013		
Kieselalgen			-	-
O DI-CH		△ Trophie	□ Sa ₁	probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	-	-

Parameter

Schwermetalle (gelöst)

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	-
Schwebstoffe (min/max)	mg/L	-
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff	-	
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃ -	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	-
Pestizide		_

Blei Pb	μg/L
Cadmium Cd	μg/L
Chrom Cr (III und VI)	μg/L
Kupfer Cu	μg/L
Nickel Ni	μg/L
Quecksilber Hg	μg/L
Zink Zn	μg/L

Einheit

2013

Indikatoren – Evolution der Situation – zu erreichende Ziele

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +			
	Nitrite / N-NO ₂ -			0
	Nitrate / N-NO ₃ -			0
	Orthophosphate / P-PO ₄ ³⁻			
	Gesamtphosphor / Ptot			
	DOC/TOC		0	
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht g Aktuelle Situation (2013)			

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich deutlich zwischen 2008 und 2013.
- > Physikalisch-chemisch: Die Qualitätsziele wurden im 2008 erreicht (gut bis sehr gut) im 2013 wurden keine Messungen vorgenommen.
- > Der ausgezeichnete ökomorphologische Zustand, der äussere Aspekt sowie die gute hydrobiologische Qualität weisen auf einen sehr guten Zustand hin. Das stark mineralische Substrat der Ärgera und deren starke Dynamik (Flussaue) limitieren das Aufkommen und die taxonomische Diversität der benthischen Fauna. Diese Station befindet sich in einem Auengebiet von nationaler Bedeutung
- > Der industrielle Abfluss, der möglicherweise Grund für die mässige Qualität im 2008 war, scheint keinen Einfluss zu haben. Auch die potentielle Beeinträchtigung der Station oberhalb durch das Kieswerk wird nicht festgestellt.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	Überwachung der industriellen Einleitung
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	
Landwirtschaft	
Pufferstreifen	-
Verschmutzungen	-

Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

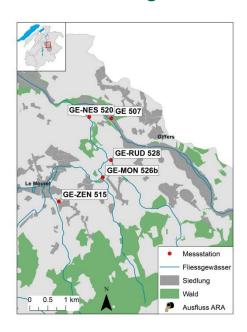
Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The same of the sa	IBCH (IBGN)				
	DI-CH		-	-	-
- II-a	Chemie				-
	Ökomorphologie F				
	Äusserer Aspekt		Färbung	Färbung	Färbung

Auskunft

—

Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez


T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE 507

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ärgera
GEWISS	232	Station	Stersmühle
Koord.	581552 / 178846	Gemeinde	Tentlingen

Kampagne	vorherig	2	2013	
	09.07.2008	26.03.2013	03.10.2013	
Ökomorphologie F	Natürlich, naturnah	Natürlich, naturnah (unterer	Abschnitt: wenig beeinträchtigt)	
Kenndaten				
Dominantes Substrat	Blöcke	Steine, k	<i>(ieselsteine</i>	
Substrate / Kolmation	-		-	
Algenbewuchs	-	Fadenalgen	Einige Fadenalgen	
Ufervegetation	2 Ufer	2 Ufer (F	(ordel RU)	
Morphologie / Verbauung	Natürlicher Fluss (lokal verbaut)	Natürlic	cher Fluss	
Einfluss oberhalb	-		-	

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	Alteisen im März und Oktober 2013
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

	Kampa	gne 2013	
	26.03.2013	03.10.2013	
Heterotropher Bewuchs			
Eisensulfid			
Schlamm			
Schaum			
Trübung			
Verfärbung			
Geruch			
Kolmation			
Feststoffe (Entwässerung)			
Anforderungen erfüllt / keine	Erfül	lung fraglich / leicht-mittel	Anforderungen nicht erfüllt / si

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	2013	
Datum	09.07.2008	26.03.2013	03.10.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	9
Indikator Gruppe	Leuctridae	Perlodidae	Perlidae
Summe Taxa	15	16	23
IBCH Wert (IBGN)	11	13	15

Bon / Sehr gut (17-20) Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12) Médiocre / Unbefriedigend (5-8) Mauvais / Schlecht (0-4)

Kieselalgen

Kampagne			2013	
Kieselalgen				-
O DI-CH		\triangle Trophie	□Sa	probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	12	90. Perzentil (ausser Abfluss und Pestizide)

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	1'174.4 (200 / 3'860)
Schwebstoffe (min/max)	mg/L	5.6 (0 / 7)
DOC	mg C/L	2.8
TOC	mg C/L	3.0
Stickstoff		
Ammonium NH ₄ +	mg N/L	0.020
Nitrite NO ₂ -	mg N/L	0.008
Nitrate NO ₃ -	mg N/L	1.15
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	0.000
Gesamtphosphor Ptot	mg P/L	0.005
Pestizide		0
Sehr gut Gut	Mässig U	Jnbefr. Sch

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	0.35
Cadmium Cd	μg/L	0.01
Chrom Cr (III und VI)	µg/L	0.76
Kupfer Cu	μg/L	1.84
Nickel Ni	µg/L	0.60
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	4.40

Indikatoren – Evolution der Situation – zu erreichende Ziele

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +			
	Nitrite / N-NO ₂ -			
	Nitrate / N-NO ₃ -			
	Orthophosphate / P-PO ₄ ³⁻			
	Gesamtphosphor / Ptot			
	DOC/TOC			
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht Gradien Aktuelle Situation (2013)			

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich deutlich zwischen 2008 und 2013.
- > Physikalisch-chemisch: Die Qualitätsziele wurden erreicht (gut bis sehr gut). Eine leichte Verminderung der Ammonium-Qualität wurde zwischen 2008 und 2013 festgestellt. Die restlichen Parameter blieben relativ stabil.
- > Pestizide: Die Qualitätsziele wurden erreicht (sehr gute Qualität)
- > Schwermetalle: Die Qualitätsziele wurden erreicht (gute bis sehr gute Qualität)
- > Der ausgezeichnete ökomorphologische Zustand, der äussere Aspekt sowie die gute hydrobiologische Qualität weisen auf einen sehr guten Zustand, frei von Verschmutzungen hin. Wie bei der Station oberhalb limitieren das stark mineralische Substrat der Ärgera und deren starke Dynamik (Flussaue) das Aufkommen und die taxonomische Diversität der benthischen Fauna. Auch diese Station befindet sich in einem Auengebiet von nationaler Bedeutung
- > Die IBCH-Resultate sind vergleichbar mit denen oberhalb.

Verbesserungsvorschläge

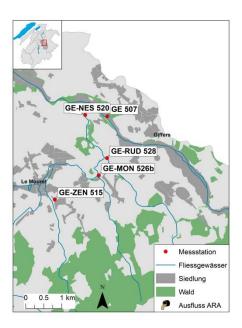
Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	
Landwirtschaft	
Pufferstreifen	-
Verschmutzungen	-

Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The same of the sa	IBCH (IBGN)				
~; ``	DI-CH		-	-	-
III-a	Chemie				
-	Ökomorphologie F				
	Äusserer Aspekt		<u> </u>		

Auskunft

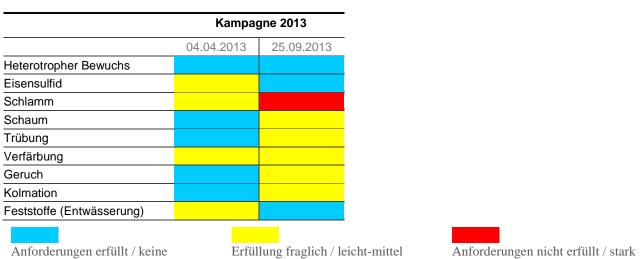
_


Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Station GE-PON 521


Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ruisseau du Pontet
GEWISS	1566	Station	Amont
Koord.	578490 / 174220	Station	Treyvaux

Kampagne	vorherig	2013		
	17.07.2008	04.04.2013	25.09.2013	
Ökomorphologie F		Stark beein	nträchtigt	
Kenndaten	· -			
Dominantes Substrat	Steine, Kieselsteine	Steine, Kie	selsteine	
Substrate / Kolmation	-	Kolmatiert (Tuff) und versandet	Kolmatiert (Schlamm)	
Algenbewuchs	Fadenalgen	Fadena	algen	
Ufervegetation	1 Ufer (RU)	2 Ufer, gelichtet		
Morphologie / Verbauung	Ufer verbaut (Betonmauern)	Ufer teils verbaut (Betonmauern)		
Einfluss oberhalb	-			

Ökomorphologische Beeinträchtigung	Flussbett teils mit Betonmauern verbaut
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	Abwassergeruch im 2008 WC-Papier im 2013, Abwassergeruch und Schlammdepots im September 2013
Angaben GEP	-
Andere Abfälle	Einige Verpackungen im April 2013
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	20	013
Datum	17.07.2008	04.04.2013	25.09.2013
Methode	IBGN	IBCH	IBCH
Nr. Gl	3	7	7
Indikator Gruppe	Hydropsychidae	Leuctridae	Leuctridae
Summe Taxa	16	16	18
IBCH Wert (IBGN)	7	11	12

Kieselalgen

Sehr gut

Kampagne			2013			
		02	.04.2013	27.09.2013		
Kieselalgen				△ △		
O DI-CH		\triangle Trophie	\square s	Saprobie		
Sehr gut	Gut	Mässig	Unbefr.	Schlecht		

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	12	90. Perzentil (ausser Abfluss und Pestiziden)

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	71 (10 / 312)
Schwebstoffe (min/max)	mg/L	62.9 (3 / 88)
DOC	mg C/L	4.4
TOC	mg C/L	6.7
Stickstoff		
Ammonium NH ₄ +	mg N/L	0.192
Nitrite NO ₂ -	mg N/L	0.020
Nitrate NO ₃ -	mg N/L	3.22
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	0.051
Gesamtphosphor Ptot	mg P/L	0.069
Pestizide		0

Mässig

Unbefr.

Schlecht

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	0.35
Cadmium Cd	µg/L	0.01
Chrom Cr (III und VI)	µg/L	0.97
Kupfer Cu	µg/L	1.66
Nickel Ni	µg/L	0.70
Quecksilber Hg	µg/L	-
Zink Zn	µg/L	3.50

Indikatoren – Evolution der Situation – zu erreichende Ziele

Modul	Indikatoren				
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)				
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)				
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)				
Ökomorphologie	Ökomorphologie F				
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)				
Hydrobiologie	Note/Qualität IBCH				
Kieselalgen	DI-CH				
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ ⁺	-			
	Nitrite / N-NO ₂ -				
	Nitrate / N-NO ₃ -				
	Orthophosphate / P-PO ₄ ³⁻				0
	Gesamtphosphor / Ptot				
	DOC/TOC			0	
	Pestizide				
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht g Aktuelle Situation (2013)				

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden nicht erreicht (mässige Qualität). Die Note verbesserte sich deutlich zwischen 2008 und 2013.
- > Kieselalgen: Die Qualitätsziele wurden nicht erreicht für die Trophie (mässige Qualität) und für die Saprobie im September (unbefriedigend).
- > Physikalisch-chemisch: Die Qualitätsziele wurden nicht erreicht für Othophosphate und für DOC/TOC (mässig). Für diese zwei Parameter wurde zwischen 2008 und 2013 eine Degradation, für Nitrit eine Verbesserung festgestellt. Die restlichen Parameter blieben relativ stabil.
- > Pestizide: Die Qualitätsziele wurden erreicht (sehr gute Qualität)
- > Schwermetalle: Die Qualitätsziele wurden erreicht (sehr gute Qualität).
- > Die mässige biologische Qualität, die Defizite im ökomorphologische Zustand äusseren Aspekt weisen auf Beeinträchtigungen hin. Die zu hohen Werte beim Orthophosphat und organischem Kohlenstoff, die ungenügenden Noten trophischen und saprobischen Indizes (mit organischem Material belastetes Gewässer), WC-Papier und Eisensulfid-Flecken im April und Geruch im September das weisen auf eine chronische Verschmutzung durch Abwasser (auch Klärgruben) hin. Auch eine Verschmutzung landwirtschaftlicher

Herkunft wäre möglich. Diese Beeinträchtigung wurde schon im 2008 entdeckt. Der Effekt scheint sich abzuschwächen.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	Suche nach Fehlanschlüssen und Kontrolle der individuellen Abwasserreinigungsanlagen
Weitere	
Landwirtschaft	Überwachung und Informieren der Landwirte
Pufferstreifen	-
Verschmutzungen	-

Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

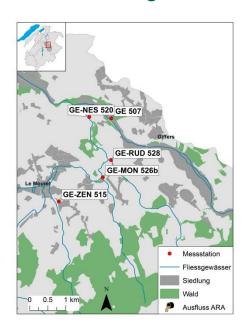
Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The same of the sa	IBCH (IBGN)				
	DI-CH				
TI.	Chemie	NO ₂ -			PO ₄ ³⁻ / DOC
	Ökomorphologie F	-			$\overline{}$
	Äusserer Aspekt		Eisensulfid / organischer Schlamm / Färbung / Abwasserabfälle	organischer Schlamm	organischer Schlamm

Auskunft

_

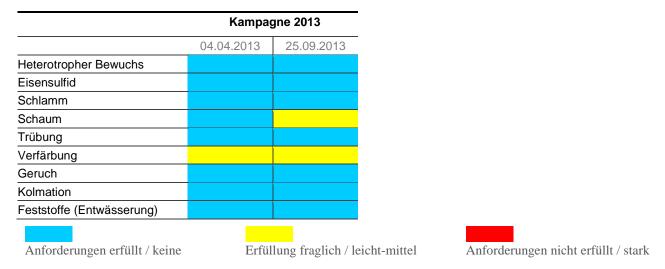
Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez


T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE-ZEN 515


Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ruisseau de Zénauva (Nesslerabach)
GEWISS	1565	Station	Montrévaz
Koord.	580121 / 176535	Gemeinde	Le Mouret

Kampagne	vorherig	20)13
	18.07.2008	04.04.2013	25.09.2013
Ökomorphologie F	Stark beeinträchtigt	Stark bee	einträchtigt
Kenndaten			
Dominantes Substrat	Steine, Kieselsteine	Steine, K	ieselsteine
Substrate / Kolmation	kolmatiert	-	Leicht kolmatiert (Tuff)
Algenbewuchs	-	Einige Fadenalgen	Fadenalgen
Ufervegetation	2 Ufer, RU gelichtet	2 Ufer, R	U gelichtet
Morphologie / Verbauung	Ufer verbaut (Blockverbau)	9	nteils verbaut verbau)
Einfluss oberhalb	-		-

Ökomorphologische Beeinträchtigung	Flussbett teils mit Betonmauern verbaut
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	Einleitung oberhalb (RU, in der Betonmauer) mit verdächtigem Schaum im September 2013.
Angaben GEP	-
Andere Abfälle	Einige Verpackungen im April und September 2013
Landwirtschaft	-
Pufferstreifen	Nicht respektiert RU
Verschmutzungen	-

Biologische und chemisch-physikalische Qualität

Makrozoobenthos

Kampagne	vorherig	20	013
Datum	18.07.2008	04.04.2013	25.09.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	8
Indikator Gruppe	Leuctridae	Chloroperlidae	Odontoceridae
Summe Taxa	21	26	24
IBCH Wert (IBGN)	13	16	14

IBGN / IBCH :

Bon / Sehr gut (17-20) Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12)

Médiocre / Unbefriedigend (5-8) Mauvais / Schlecht (0-4)

Kieselalgen

Kampagne				201	3
		(02.04.201	3	27.09.2013
Kieselalgen			<u> </u>		○ △ ■
O DI-CH		\triangle Trophie		□ Sa _l	probie
Sehr gut	Gut	Mässig	Unb	efr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	-	-

Parameter	Einheit	2013
Mittlerer Abfluss	L/s	-
(min/max)		
Schwebstoffe	mg/L	-
(min/max)		
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff		
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃ -	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	-
Pestizide		_

Mässig

Unbefr.

Schlecht

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	-
Cadmium Cd	µg/L	-
Chrom Cr (III und VI)	µg/L	-
Kupfer Cu	µg/L	-
Nickel Ni	µg/L	-
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	-

Sehr gut

Indikatoren – Evolution der Situation – zu erreichende Ziele

ation (künstlichen oder unbekannten Ursprungs) ändig, stark, mittel, leicht, keine) otropher Bewuchs nittel, wenig, vereinzelt, kein) toffe/Abfälle zahlreich, zahlreich, vereinzelt, sehr wenig, keine) norphologie F
nittel, wenig, vereinzelt, kein) toffe/Abfälle zahlreich, zahlreich, vereinzelt, sehr wenig, keine)
zahlreich, zahlreich, vereinzelt, sehr wenig, keine)
porphologie F
is pricing to
egetation cht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)
Qualität IBCH
1
onium / N-NH ₄ +
e / N-NO ₂ -
e / N-NO ₃ -
phosphate / P-PO ₄ ³⁻
mtphosphor / Ptot
тос
zide

Interpretation

- > Makrozoobenthos: Die Qualitätsziele wurden nicht erreicht (mässige Qualität). Die Note verbesserte sich leicht zwischen 2008 und 2013.
- > Kieselalgen: Die Qualitätsziele wurden erreicht (gute bis sehr gute Qualität)
- > Trotz der Defizite in der Ökomorphologie und im äusseren Aspekt zeigen die guten Resultate des IBCH und der Kieselalgen einen guten Zustand des Gewässers auf. Das Fehlen der Indikatorengruppe 9 im September könnte eine leichte Degradation darstellen, deren Ursprung ein Auslauf am rechten Ufer sein könnte. Ein weiterer Einfluss ist die natürliche Kolmation (Tuff), die das kolonisierbare Substrat verringert, was eine Verminderung der ohnehin geringen Dichte an sensiblen Taxa zur Folge hat.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	Kontrolle der Einleitung am RU
Weitere	-
Landwirtschaft	
Pufferstreifen	Schaffung eines Puffersteifens (6m RU)
Verschmutzungen	-

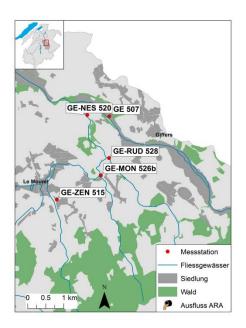
Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The state of the s	IBCH (IBGN)				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DI-CH				
TI.	Chemie	-			-
	Ökomorphologie F				
	Äusserer Aspekt		Färbung	Schaum / Färbung	Schaum / Färbung

#### Auskunft

_

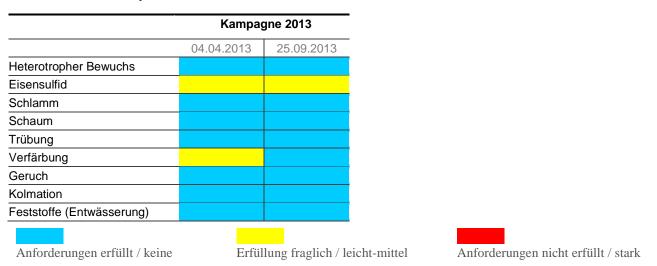
Amt für Umwelt AfU Sektion Gewässerschutz


Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

## **Station GE-MON 526b**


# Beschreibung der Station – Einzugsgebiet



EzG	20-270	Fluss	Ruisseau de Montécu
GEWISS	1573	Station	Amont confl. R. du Pontet
Koord.	581342 / 177204	Gemeinde	Le Mouret

Kampagne	vorherig	2013		
	21.07.2008	04.04.2013	25.09.2013	
Ökomorphologie F	-	Natürli	ch / naturnah	
Kenndaten				
Dominantes Substrat	Steine, Kieselsteine	Steinplatten /	Steine, Kieselsteine	
Substrate / Kolmation	-	kolmatiert (Tuff)		
Algenbewuchs	-	Fadenalgen	Einige Fadenalgen	
Ufervegetation	2 Ufer		2 Ufer	
Morphologie / Verbauung	Natürlicher Fluss	Natürlicher Fluss		
Einfluss oberhalb	-		-	

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	Industrielle Einleitung
Andere Abfälle	Einige Abfälle im März und Oktober 2013
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-



#### Makrozoobenthos

Kampagne	vorherig	2013		
Datum	21.07.2008	04.04.2013	25.09.2013	
Methode	IBGN	IBCH	IBCH	
Nr. GI	7	9 8		
Indikator Gruppe	Leuctridae	Perlodidae	Odontoceridae	
Summe Taxa	21	26	21	
IBCH Wert (IBGN)	13	16	14	













#### Kieselalgen

Sehr gut

Kampagne			201	3
Kieselalgen				-
O DI-CH		$\triangle$ Trophie		probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

#### Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	-	-

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	-
Schwebstoffe (min/max)	mg/L	-
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff		
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃ -	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	_
Pestizide		_

Mässig

	-			
	-			
	_			
Unbefr.		Schle	echt	

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	-
Cadmium Cd	µg/L	-
Chrom Cr (III und VI)	µg/L	-
Kupfer Cu	µg/L	-
Nickel Ni	µg/L	-
Quecksilber Hg	μg/L	-
Zink Zn	µg/L	-

Modul	Indikatoren					
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)					
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)					
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)					
Ökomorphologie	Ökomorphologie F					
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)					
Hydrobiologie	Note/Qualität IBCH					
Kieselalgen	DI-CH					
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ ⁺					
	Nitrite / N-NO ₂ -					
	Nitrate / N-NO ₃ -					
	Orthophosphate / P-PO ₄ ³⁻					
	Gesamtphosphor / Ptot					
	DOC/TOC					
	Pestizide					
Sehr gut Gut Mässig  Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht  g Aktuelle Situation (2013)					

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich leicht zwischen 2008 und 2013.
- > Trotz der leichten Defizite des äusseren Aspekts (Eisensulfid) zeigen die gute biologische Qualität und die Ökomorphologie einen guten Zustand des Gewässers auf. Das Fehlen der Indikatorengruppe 9 im September stellt möglicherweise eine leichte Degradation dar, deren Ursprung ein industrieller Abfluss sein könnte. Ein weiterer Einfluss hat die natürliche Kolmation (Tuff), die das kolonisierbare Substrat verringert, was eine Verminderung der ohnehin geringen Dichte an sensiblen Taxa zur Folge hat.

# Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	Überwachung der industriellen Einleitungen
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

# Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

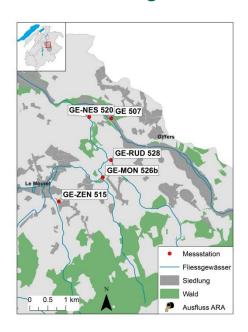
Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
	IBCH (IBGN)				
~ id	DI-CH		-	-	-
- HI	Chemie	-			-
*	Ökomorphologie F	-			
	Äusserer Aspekt		Eisensulfid / Färbung	Eisensulfid	Eisensulfid / Färbung

#### Auskunft

_

Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez


T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016



### **Station GE-RUD 528**

# Beschreibung der Station – Einzugsgebiet



EzG	20-270	Fluss	Rüdigraben
GEWISS	1574	Station	Amont confl. Nesslerabach
Koord.	581570 / 177685	Gemeinde	St. Silvester / Le Mouret

### Kenndaten der Station

Kampagne	vorherig	2013		
	18.07.2008	26.03.2013	03.10.2013	
Ökomorphologie F	-	Wenig beeir	nträchtigt	
Kenndaten				
Dominantes Substrat	Steine, Kieselsteine	Steine, Kies	selsteine	
Substrate / Kolmation	-	Leicht kolmatiert (Tuff) und versandet	kolmatiert (Tuff) und versandet	
Algenbewuchs	-	Einige Fad	enalgen	
Ufervegetation	2 Ufer, gelichtet	2 Ufer, gelichtet		
Morphologie / Verbauung	Natürlicher Fluss	Natürlicher Fluss		
Einfluss oberhalb	-	-		

# Beeinträchtigungen und Entwicklungen

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	Einige Abfälle (Backsteine, Pflanzliche Abfälle) im März und Oktober 2013
Landwirtschaft	-
Pufferstreifen	Nicht respektiert RU
Verschmutzungen	-

# Äusserer Aspekt

	Kampa	gne 2013		
	26.03.2013	03.10.2013		
Heterotropher Bewuchs				
Eisensulfid				
Schlamm				
Schaum				
Trübung				
Verfärbung				
Geruch				
Kolmation				
Feststoffe (Entwässerung)				
Anforderungen erfüllt / keine	Erfül	lung fraglich / leicht-mi	itel	

#### Makrozoobenthos

Kampagne	vorherig	20	13
Datum	18.07.2008	26.03.2013	03.10.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	8
Indikator Gruppe	Leuctridae	Taeniopterygidae	Odontoceridae
Summe Taxa	20	26	29
IBCH Wert (IBGN)	12	16	16



Bon / Sehr gut (17-20)

Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12) Médiocre / Unbefriedigend (5-8) Mauvais / Schlecht (0-4)

#### Kieselalgen

Kampagne			2013
Kieselalgen			
O DI-CH		$\triangle$ Trophie	☐ Saprobie
Sehr gut	Gut	Mässig	Unbefr. Schlecht

#### Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	-	-

Parameter	Einheit	2013
Mittlerer Abfluss	L/s	-
(min/max)		
Schwebstoffe	mg/L	-
(min/max)		
DOC	mg C/L	-
TOC	mg C/L	-
Stickstoff		
Ammonium NH ₄ +	mg N/L	-
Nitrite NO ₂ -	mg N/L	-
Nitrate NO ₃	mg N/L	-
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	-
Gesamtphosphor Ptot	mg P/L	-
Pestizide		_

Mässig

Unbefr.

Schlecht

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	μg/L	-
Cadmium Cd	μg/L	-
Chrom Cr (III und VI)	μg/L	-
Kupfer Cu	μg/L	-
Nickel Ni	µg/L	-
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	-

Sehr gut

Modul	Indikatoren					
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)					
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)					
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)					
Ökomorphologie	Ökomorphologie F					
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)					
Hydrobiologie	Note/Qualität IBCH					
Kieselalgen	DI-CH					
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +					
	Nitrite / N-NO ₂ -					
	Nitrate / N-NO ₃ -				0	
	Orthophosphate / P-PO ₄ ³⁻					
	Gesamtphosphor / P _{tot}					
	DOC/TOC				0	
	Pestizide					

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich deutlich zwischen 2008 und 2013.
- > Physikalisch-chemisch: Die Qualitätsziele wurden im 2008 erreicht (gut bis sehr gut) im 2013 wurden keine Messungen vorgenommen.
- > Der gute IBCH, die Ökomorphologie und der äussere Aspekt zeigen auf eine gute Qualität des Gewässers auf. Das Fehlen der sensibelsten Taxa (Perlidae, Perlodidae, Chloroperlidae) im April und das Fehlen der gesamten Indikatorengruppe 9 im September weisen trotzdem auf eine mögliche Beeinträchtigung hin (z.B. Temperaturerhöhung). Ein weiterer Einfluss ist die natürliche Kolmation (Tuff), die das kolonisierbare Substrat verringert, was eine Verminderung der ohnehin geringen Dichte an sensiblen Taxa zur Folge hat.

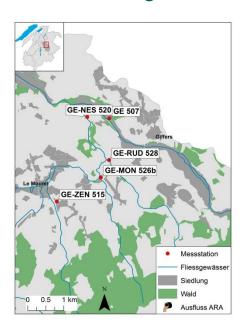
# Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	-
Landwirtschaft	
Pufferstreifen	Schaffung eines Puffersteifens (6m RU)
Verschmutzungen	-

# Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
	IBCH (IBGN)				
~~~	DI-CH		-	-	-
III-	Chemie				-
*	Ökomorphologie F	-			
	Äusserer Aspekt		<u> </u>		

Auskunft


Amt für Umwelt AfU Sektion Gewässerschutz

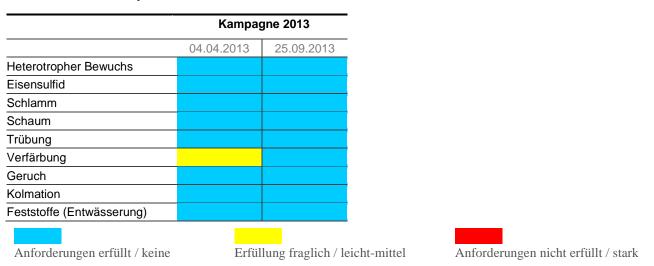
Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Station GE-NES 520

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Nesslerabach
GEWISS	1565	Station	Bredeleu (aval)
Koord.	580949 / 178872	Gemeinde	Villarsel-sur-Marly / Tentlingen


Kenndaten der Station

Kampagne	vorherig	2	013
	21.07.2008	21.07.2008 04.04.2013	
Ökomorphologie F	Wenig beeinträchtigt	Natürlich	/ naturnah
Kenndaten			
Dominantes Substrat	Blöcke	Steine, K	Kieselsteine
Substrate / Kolmation	-	Leicht kolr	matiert (Tuff)
Algenbewuchs	-	Einige F	adenalgen
Ufervegetation	1Ufer	2 Ufer, R	RU gelichtet
Morphologie / Verbauung	Ufer verbaut (Steinplatte)	Natürlic	cher Fluss
Einfluss oberhalb	-		-

Beeinträchtigungen und Entwicklungen

Ökomorphologische Beeinträchtigung	Bachbett lokal beeinträchtigt im 2008 (RU: Kurve mit Steinplatte)
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

Äusserer Aspekt

Makrozoobenthos

Kampagne	vorherig	20	13
Datum	21.07.2008	04.04.2013	25.09.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	8
Indikator Gruppe	Leuctridae	Taeniopterygidae	Odontoceridae
Summe Taxa	21	23	21
IBCH Wert (IBGN)	13	15	14

Kieselalgen

Sehr gut

Kampagne			201	3
Kieselalgen				-
O DI-CH		\triangle Trophie		probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	12	90. Perzentil (ausser Abfluss und Pestiziden)

Schlecht

Parameter

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	575.0 (223 / 1'340)
Schwebstoffe (min/max)	mg/L	11.6 (1.5 / 55)
DOC	mg C/L	3.1
TOC	mg C/L	3.4
Stickstoff		
Ammonium NH ₄ +	mg N/L	0.133
Nitrite NO ₂ -	mg N/L	0.022
Nitrate NO ₃ -	mg N/L	3.11
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	0.018
Gesamtphosphor Ptot	mg P/L	0.039
Pestizide		0

Mässig

Schwermetalle (gelöst)		
Blei Pb	µg/L	0.35
Cadmium Cd	µg/L	0.01
Chrom Cr (III und VI)	µg/L	1.60
Kupfer Cu	μg/L	2.02
Nickel Ni	μg/L	0.59
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	

Einheit

2013

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ ⁺	-		
	Nitrite / N-NO ₂ -			
	Nitrate / N-NO ₃ -			
	Orthophosphate / P-PO ₄ ³⁻			
	Gesamtphosphor / Ptot			
	DOC/TOC			
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht g Aktuelle Situation (2013)			

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich leicht zwischen 2008 und 2013.
- > Physikalisch-chemisch: Die Qualitätsziele wurden erreicht (gut bis sehr gut). Die Werte blieben relativ stabil zwischen 2008 und 2013.
- > Pestizide: Die Qualitätsziele wurden erreicht (sehr gute Qualität)
- > Schwermetalle: Die Qualitätsziele wurden nicht erreicht für Kupfer (mässige Qualität).
- > Der gute IBCH, die Ökomorphologie und der äussere Aspekt zeigen auf eine gute Qualität des Gewässers auf ohne Anzeichen einer Verschmutzung. Das Fehlen der sensibelsten Taxa (Perlidae, Perlodidae, Chloroperlidae) im April und das Fehlen der gesamten Indikatorengruppe 9 im September weisen trotzdem auf eine mögliche Beeinträchtigung hin, die im Zusammen mit dem Abwassereintrag bei der Station oberhalb GE-PON 521 oder mit abiotischen Einflüssen (z.B. Temperaturerhöhung) stehen könnte. Ein weiterer Einfluss ist die natürliche Kolmation (Tuff), die das kolonisierbare Substrat verringert, was eine Verminderung der ohnehin geringen Dichte an sensiblen Taxa zur Folge hat.

> Die deutliche Verbesserung der biologischen und chemisch-physikalischen Qualität im Vergleich zur Station oberhalb GE-PON 521, wird durch die Zuflüsse mit guter Qualität (Nesslerabach, R. de Montécu, Rüedigraben) und der Selbstreinigung erklärt. Auch der bessere ökomorphologische Zustand kann den IBCH positiv beeinflussen.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

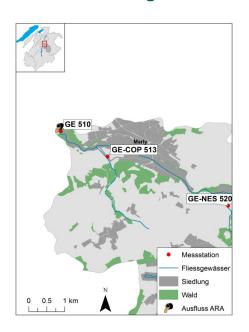
Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The same of the sa	IBCH (IBGN)				
	DI-CH		-	-	-
- III	Chemie				
	Ökomorphologie F				
	Äusserer Aspekt		Färbung		Färbung

Auskunft

_

Amt für Umwelt AfU Sektion Gewässerschutz


Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE-COP 513

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Ruisseau de Copy
GEWISS	1564	Station	Aval
Koord.	577569 / 180270	Gemeinde	Marly

Kenndaten der Station

Kampagne	vorherig	20	13
	09.07.2008	04.04.2013	25.09.2013
Ökomorphologie F	Wenig beeinträchtigt	Weinig bee	einträchtigt
Kenndaten			
Dominantes Substrat	Blöcke / Steine, Kieselsteine	Kie	es
Substrate / Kolmation	Kolmatiert (Tuff)	Stark kolma	atiert (Tuff)
Algenbewuchs	-	Einige Fa	denalgen
Ufervegetation	2 Ufer	2 Ufer RU	gelichtet
Morphologie / Verbauung	Ufer verbaut (Blockverbau)	Natürlich	er Fluss
Einfluss oberhalb		-	

Beeinträchtigungen und Entwicklungen

Ökomorphologische Beeinträchtigung	Bachbett beeinträchtigt durch Blockverbau im 2008
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	Einige Verpackungen im September 2013
Landwirtschaft	-
Pufferstreifen	Respektiert
Verschmutzungen	-

Äusserer Aspekt

	Kampa	gne 2013	
	04.04.2013	25.09.2013	-
Heterotropher Bewuchs			
Eisensulfid			
Schlamm			
Schaum			
Trübung			
Verfärbung			
Geruch			
Kolmation			
Feststoffe (Entwässerung)			
Anforderungen erfüllt / keine	Erfül	llung fraglich / le	ij

Makrozoobenthos

Kampagne	vorherig	201	3
Datum	09.07.2008	04.04.2013	25.09.2013
Methode	IBGN	IBCH	IBCH
Nr. GI	7	9	7
Indikator Gruppe	Leuctridae	Taeniopterygidae	Leuctridae
Summe Taxa	22	24	26
IBCH Wert (IBGN)	13	15	14

Bon / Sehr gut (17-20)

Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12)

Médiocre / Unbefriedigend (5-8)

Mauvais / Schlecht (0-4)

Kieselalgen

Kampagne			201	3
Kieselalgen				-
O DI-CH		\triangle Trophie		probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung oder Salinomad	12	90. Perzentil (ausser Abfluss und Pestizide)

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	76.3 (32 / 161)
Schwebstoffe (min/max)	mg/L	8.4 (0 / 13)
DOC	mg C/L	2.2
TOC	mg C/L	2.0
Stickstoff		
Ammonium NH ₄ +	mg N/L	0.027
Nitrite NO ₂ -	mg N/L	0.013
Nitrate NO ₃ -	mg N/L	4.35
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	0.008
Gesamtphosphor Ptot	mg P/L	0.014
Pestizide		2

	mg C/L	2.0
stoff		
onium NH ₄ +	mg N/L	0.027
e NO ₂ -	mg N/L	0.013
e NO₃⁻	mg N/L	4.35
phor		
phosphate PO ₄ 3-	mg P/L	0.008
mtphosphor Ptot	mg P/L	0.014
zide		2

Mässig

Unbefr.

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	0.35
Cadmium Cd	µg/L	0.01
Chrom Cr (III und VI)	µg/L	1.59
Kupfer Cu	μg/L	1.18
Nickel Ni	µg/L	0.67
Quecksilber Hg	μg/L	-
Zink Zn	μg/L	3.50

Sehr gut

Gut

Ökomorphologie Ökomorphologie Ökomorphologie Ökomorphologie Hydrobiologie Note/Qualität Kieselalgen DI-CH	eich, zahlreich, vereinzelt, sehr wenig, keine) nologie F ation ehlend, mittel=1 Ufer, sehr gut=2 Ufer)		
Ökomorphologie Ökomorphologie Ökomorphologie Ökomorphologie Hydrobiologie Kieselalgen DI-CH Physikalisch-chomische Qualität	wenig, vereinzelt, kein) /Abfälle eich, zahlreich, vereinzelt, sehr wenig, keine) nologie F ation ehlend, mittel=1 Ufer, sehr gut=2 Ufer)		
Ökomorphologie Ökomorphologie Uferveget (schlecht=1) Hydrobiologie Note/Qual Kieselalgen DI-CH	eich, zahlreich, vereinzelt, sehr wenig, keine) nologie F ation ehlend, mittel=1 Ufer, sehr gut=2 Ufer)	i	
Hydrobiologie Kieselalgen Physikalisch shomische Qualität	ation ehlend, mittel=1 Ufer, sehr gut=2 Ufer)		
Hydrobiologie Kieselalgen DI-CH Physikalisch-shomische Qualität	ehlend, mittel=1 Ufer, sehr gut=2 Ufer)		
Kieselalgen DI-CH Physikalisch-chomische Qualität	lität IBCH		
Physikalisch chamischa Qualität			
Physikalisch-chemische Qualität			
Ammoniu	m / N-NH ₄ +		
Nitrite / N	NO ₂ -		
Nitrate / N	I-NO ₃ -		
Orthopho	sphate / P-PO4 ³⁻		
Gesamtpl	nosphor / P _{tot}		
DOC/TOC	;		
Pestizide			

- > Makrozoobenthos: Die Qualitätsziele wurden erreicht (gute Qualität). Die Note verbesserte sich leicht zwischen 2008 und 2013.
- > Physikalisch-chemisch: Die Qualitätsziele wurden erreicht (gut bis sehr gut). Für Phosphor total konnte zwischen 2008 und 2013 eine leichte Abnahme beobachtet werden. Die restlichen Parameter blieben relativ stabil.
- > Pestizide: Die Qualitätsziele wurden erreicht (sehr gute Qualität).
- > Schwermetalle: Die Qualitätsziele wurden erreicht (gute bis sehr gute Qualität).
- > Der gute IBCH, die Ökomorphologie und der äussere Aspekt zeigen auf eine gute Qualität des Gewässers auf ohne Einfluss von Verschmutzungen. Das Fehlen der sensibelsten Taxa (Perlidae, Perlodidae, Chloroperlidae) im April und das Fehlen der gesamten Indikatorengruppen 8 und 9 im September weisen trotzdem auf eine Beeinträchtigung hin. Diese kann in den Zusammenhang gebracht werden mit der natürlichen Kolmation (Tuff), die das kolonisierbare Substrat verringert, was eine Verminderung der ohnehin geringen Dichte an sensiblen Taxa zur Folge hat oder mit abiotischen Faktoren (erhöhte Temperatur oder kleiner Abfluss).

> Im April wurden Sömmerlinge beobachtet. Die gute Qualität und das vielfältige Substrat schein die Fischvermehrung zu begünstigen. Diese Qualität muss unbedingt bewahrt werden.

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	Kontrolle der individuellen Abwasserreinigungsanlagen
Weitere	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

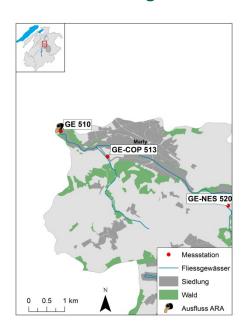
Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
The state of the s	IBCH (IBGN)				
- it	DI-CH		-	-	-
M	Chemie				
*	Ökomorphologie F				
	Äusserer Aspekt		<u> </u>		

Auskunft

Amt für Umwelt AfU

Sektion Gewässerschutz


Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

Station GE 510

Beschreibung der Station – Einzugsgebiet

EzG	20-270	Fluss	Gérine
GEWISS	232	Station	Embouchure
Koord.	576310 / 180940	Gemeinde	Marly

Kenndaten der Station

Kampagne	vorherig	2013
	09.07.2008	
Ökomorphologie F	Natürlich / naturnah	Wenig beeinträchtigt
Kenndaten		
Dominantes Substrat	Stein, Kieselsteine	
Substrate / Kolmation	-	
Algenbewuchs	Einige Fadenalgen	
Jfervegetation	2 Ufer	
Morphologie / Verbauung	Natürlicher Fluss	
Einfluss oberhalb		

Beeinträchtigungen und Entwicklungen

Ökomorphologische Beeinträchtigung	-
Revitalisierung	-
Wasserkraft	-
Wasserentnahme / Talsperren	-
Restwasser / Schwall und Sunk	-
Weitere Fassungen	-
Abwasserbehandlung	-
ARA	-
Bauwerke, RÜ, RWB	-
Eintrag Abwasser	-
Angaben GEP	-
Andere Abfälle	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

Äusserer Aspekt

	Kampagne 2013	
	-	-
Heterotropher Bewuchs		
Eisensulfid		
Schlamm		
Schaum		
Trübung		
Verfärbung		
Geruch		
Kolmation		
Feststoffe (Entwässerung)		

Anforderungen erfüllt / keine Erfüllung fraglich / leicht-mittel

Anforderungen nicht erfüllt / stark

Makrozoobenthos

Kampagne	vorherig	2013	
Datum	09.07.2008	-	-
Methode	IBGN		
Nr. Gl	7		
Indikator Gruppe	Leuctridae		
Summe Taxa	15		
IBCH Wert (IBGN)	11		

Bon / Sehr gut (17-20)

Satisfaisant / Gut (13-16)

Moyen / Mässig (9-12)

Médiocre / Unbefriedigend (5-8) Mauvais / Schlecht (0-4)

Kieselalgen

Kampagne			2013	
Kieselalgen				-
O DI-CH		△ Trophie	□ Sa	probie
Sehr gut	Gut	Mässig	Unbefr.	Schlecht

Abfluss und physikalisch-chemische Parameter

Art der Probenahme	Anzahl	Angegebener Wert
Punktuelle Probenahmen / Abflussmessung mit Salinomad	12	90. Perzentil (ausser Abfluss und Pestizide)

Parameter	Einheit	2013
Mittlerer Abfluss (min/max)	L/s	1'752.5 (655 / 4'700)
Schwebstoffe (min/max)	mg/L	4.8 (0 / 9)
DOC	mg C/L	2.8
TOC	mg C/L	2.8
Stickstoff		
Ammonium NH ₄ +	mg N/L	0.023
Nitrite NO ₂ -	mg N/L	0.011
Nitrate NO ₃ -	mg N/L	2.57
Phosphor		
Orthophosphate PO ₄ 3-	mg P/L	0.004
Gesamtphosphor Ptot	mg P/L	0.011
Pestizide		6
PCB / PAK	ng/L	< LQ

Parameter	Einheit	2013
Schwermetalle (gelöst)		
Blei Pb	µg/L	0.35
Cadmium Cd	μg/L	0.01
Chrom Cr (III und VI)	µg/L	1.29
Kupfer Cu	μg/L	1.50
Nickel Ni	µg/L	0.60
Quecksilber Hg	μg/L	-
Zink Zn	µg/L	3.50

Modul	Indikatoren			
Äusserer Aspekt	Kolmation (künstlichen oder unbekannten Ursprungs) (vollständig, stark, mittel, leicht, keine)			
	Heterotropher Bewuchs (viel, mittel, wenig, vereinzelt, kein)			
	Feststoffe/Abfälle (sehr zahlreich, zahlreich, vereinzelt, sehr wenig, keine)			0
Ökomorphologie	Ökomorphologie F			
	Ufervegetation (schlecht=fehlend, mittel=1 Ufer, sehr gut=2 Ufer)			
Hydrobiologie	Note/Qualität IBCH			
Kieselalgen	DI-CH			
Physikalisch-chemische Qualität	Ammonium / N-NH ₄ +			
	Nitrite / N-NO ₂ -			
	Nitrate / N-NO ₃			
	Orthophosphate / P-PO ₄ ³⁻			
	Gesamtphosphor / Ptot			
	DOC/TOC			
	Pestizide			
Sehr gut Gut Mässig Situation zu Beginn der Beobachtun (2008)	Unbefr. Schlecht g Aktuelle Situation (2013)			

- > Makrozoobenthos: Die Qualitätsziele wurden nicht erreicht im 2008 (mässige Qualität). Im 2013 wurde der IBCH nicht ermittelt.
- Physikalisch-chemisch: Die Qualitätsziele wurden erreicht (gut bis sehr gut). Für Nitrat konnte zwischen 2008 und 2013 eine leichte Zunahme der Konzentration beobachtet werden. Die restlichen Parameter blieben relativ stabil.
- > Pestizide: Die Qualitätsziele wurden erreicht (gute Qualität).
- > PCB / PAK: Werte bleiben unterhalb der Nachweiskonzentration.
- > Schwermetalle: Die Qualitätsziele wurden erreicht (gute bis sehr gute Qualität).
- > Die physikalisch-chemischen Parameter zeigen keine signifikante Verschmutzung auf.
- > Sehr leichte Zunahme der Nitrit-, Nitrat- und Pestizidkonzentration gegenüber der Station oberhalb (GE 507).

Verbesserungsvorschläge

Synergien mit der Revitalisierung	-
Wasserkraft / Fassungen	-
Dotierung	-
Schwall-und-Sunk Betrieb	-
Abwasserbehandlung / GEP	-
ARA - Bauwerke	-
Eintrag Abwasser	-
Weitere	-
Landwirtschaft	-
Pufferstreifen	-
Verschmutzungen	-

Synthese - Globalzustand nach MSK "Spezialisten-Ebene"

Module	Evaluation	Vorherige Kampagnen	Jahr 2013 Frühling	Jahr 2013 Herbst	Jahr 2013 Synthese
- All Control of the	IBCH (IBGN)		-	-	-
	DI-CH		-	-	-
- H-a	Chemie				
*	Ökomorphologie F				
	Äusserer Aspekt		-	-	-

Auskunft

_

Amt für Umwelt AfU Sektion Gewässerschutz

Impasse de la Colline 4, 1762 Givisiez

T +26 305 37 60, F +26 305 10 02 sen@fr.ch, www.fr.ch/wasser

Dezember 2016

